Extreme Biology – Life at All Scales and Energies

Extreme Biology – Life at All Scales and Energies

Fixation on Earth-based Visible Life

A number of fixations plaguing the astrobiology community regarding the pre-requisites for life is retarding the development of biology and the search for new life in the universe. These fixations work as smokescreens to obscure the myriads of other types of life forms that may be thriving even in our Solar System. Astrobiologists, particularly at NASA, appear to have a dogmatic fixation on studying life only at the biochemical level, a pre-occupation with water as a substrate for life, adamant on only studying carbon-based life forms, restricted to a very narrow temperature range and scale; and not even noticing that all the life forms that they have imagined in their wildest models are only based on particles within the (physicists’) Standard Model.

Physics affects biology in a more fundamental way than even chemistry or biochemistry. New developments in physics should open up areas to consider more extreme life forms. If we find dark matter and supersymmetric particles – would biologists then start thinking about dark matter and supersymmetric life forms? Should we be talking about “quantum biology”? When physicists talk of parallel universes, would biologists consider symbiosis between life forms in parallel universes? Is Darwin’s tree of life complete? Where are its roots?

Life at Extremely Small Scales – Nano and Quantum Life

Bacteria may be no larger than 10 microns; viruses no larger than 100 nanometers; molecules about 1 nanometer and atoms about 0.1 nanometer. Does scale impose a barrier to life or even consciousness? If viruses are considered life forms (as some leading astrobiologists argue) then they constitute “nano-life”.

Consciousness may even exist at the quantum scale. “In some strange way an electron or a photon [or any other elementary particle] seems to ‘know’ about changes in the environment and appears to respond accordingly,” says physicist Danah Zohar. A group at the Weizmann Institute in Israel has done a variation of the famous “double-slit” experiment. They used electrons, instead of photons, and observed how the resultant interference pattern (which indicates wave-like properties of the particle) dissipated the longer you watched the electrons go through the slits. As a wave the electron passes through both slits simultaneously but if, according to E Buks, it “senses” that it is being watched, the electron (as a particle) goes through only one path, diminishing the interference pattern. Elementary particles (such as photons and electrons) appear to possess a certain degree of “intelligence” and awareness of the environment. Renowned plasma and particle physicist, David Bohm, says “In some sense a rudimentary mind-like quality is present even at the level of particle physics. As we go to subtler levels this mind-like quality becomes stronger and more developed.”

In a new field called “quantum metaphysics”, Jay Alfred has proposed that consciousness is as fundamental a property to elementary particles as properties that make it “matter” or a “physical force” (for example, mass, spin and charge) (see Conscious Particles, Fields and Waves, 2007). And just as mass, spin and charge differ from one particle to another; it is probable that different particles have different degrees of consciousness. He has argued (see Jay Alfred, Our Invisible Bodies, 2006) that consciousness can manifest depending on the degree of quantum coherence and the intrinsic properties of the single particle. (This may be cited as the “Quantum Coherence Theory of Consciousness”.)

In studying particle consciousness we must not get distracted by their scale. In fact, (under quantum field theory) particles are excitations in a field that may be infinitely large. Every particle has a corresponding field. If a particle is considered a “unicellular life form” then a field of particles may be considered a “multicelluar life form” – except that these “cells” go in and out of existence within the field. This obviously begs the question – Is the biochemical cell the smallest unit of life? If not, then a biological revolution, more important than the Corpernican revolution in terms of its impact on society, is around the corner.

Life at Extremely Large Scales

Life at all scales are probable – including at the planetary, stellar and galactic scales; and even the universe and multiverse. The Gaia hypothesis has been proposed by James Lovelock and Lynn Margulis. Jay Alfred has proposed life at cosmic and global scales by using the “plasma metaphysics” model which believes that an extensive web of currents in space and on Earth exists which is both anatomically and physiologically similar to a neural network in the human brain. (See Are We Living in a Gigantic Brain? 2007) This web of currents in space not only looks like a neural network, it functions like one. We should not be surprised to see life being engineered using an electromagnetic substrate. A biochemcial cell’s membrane is now thought to function like a semi-conductor.

Perhaps a thought experiment could be enlightening. Imagine yourself as a cell within your brain carefully observing your environment with a nano-telescope. Would you consider your brain as being able to support consciousness? What you would see are neural cells alternately firing and resting; chemicals rushing to synapses and the zapping of nasty electrical currents – clearly not a very “habitable zone” for life or consciousness to exist – from your microscopic point of view. But we know better…

Could the plasma universe, with its network of currents, be a living, conscious entity? Was the quark-gluon plasma ball that inflated during the Big Bang a life form?

High Energy Biology – Life at High Energies and Temperatures

At high temperatures, molecules break up into atoms and atoms break up into a soup of sub-atomic particles called plasma. (Partially ionized gases are also described as “plasma”.) Plasma life forms are likely to be the most common life form in the universe, given that plasma makes up more than 99% of our visible universe which is almost everywhere ionized. This is in stark contrast to complex carbon-based life forms, which according to the Rare Earth hypothesis proposed by Peter Ward and Donald Brownlee, would be rare in the universe due to a number of factors – including the need for an acceptable range of temperatures to survive.

Plasma is an ideal substrate for life at high temperatures. Plasma life forms would adapt to environments which would be considered hostile to carbon-based life forms. It is possible that plasma life forms were already present in the gas and materials that formed the Earth 4.6 billion years ago. Carbon-based biomolecular life forms only appeared 1 billion years later. Tsytovich and other scientists (including Lozneanu and Sanduloviciu, discussed below) have proposed that plasma life forms, in fact, spurred development of organic carbon-based life on Earth.

In 2003 physicists; Erzilia Lozneanu and Mircea Sanduloviciu of Cuza University, Romania, described in their research paper Minimal Cell System created in Laboratory by Self-Organization (published in Chaos, Solitons & Fractals, volume 18, page 335), how they created plasma spheres in the laboratory that can grow, replicate and communicate – fulfilling most of the traditional requirements for biological cells. The physicists “grew” spheres from a few micrometers up to three centimeters in diameter. They are convinced that these plasma spheres offer a radically new explanation of how life began and proposed that they were precursors to biological evolution. Lozneanu plasma spheres can reproduce by replicating, just like bacteria which are generally considered “immortal” and do not undergo “apoptosis” or programmed cell death.

It is still a mystery in mainstream biology as to how DNA originated. An international scientific team has discovered that in the gravity-free environment of space, particles in plasma will bead together to form string-like filaments which will then twist into helical strands resembling DNA that are electrically charged and are attracted to each other. Using a computer model of molecular dynamics, V N Tsytovich and his colleagues of the Russian Academy of Science showed (in their paper entitled From Plasma Crystals and Helical Structures towards Inorganic Living Matter, published in the New Journal of Physics in August 2007) that particles in plasma can undergo self-organization as electric charges become separated and the plasma becomes polarized. “These complex, self-organized plasma structures exhibit all the necessary properties to qualify them as candidates for inorganic living matter”, says Tsytovich, “they are autonomous, they reproduce and they evolve”.

Past studies, subject to Earth’s gravity, have shown that if enough particles are injected into a low-temperature plasma, they will spontaneously organize into crystal-like structures or “plasma crystals”. Jay Alfred has characterized “subtle bodies” as plasma crystals in his 2006 book Our Invisible Bodies. He has written extensively about the anatomy and physiology of these bioplasma bodies generating a new field of research called “plasma metaphysics”.

According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), plasma is subject to self-organization through both thermodynamics and electrodynamics. Plasma life forms have various mechanisms for the absorption and distribution of energy – in other words a metabolic system. These include both vortexes (equivalent to orifices in common biological systems) and filamentary currents (equivalent to tubes and circulatory systems in common biological systems) which are structured by magnetic fields and driven by electric fields. Information is stored in the nucleus of the bioplasma body as compressed wave-forms (using Fourier transforms) and used for replication. Plasma life forms are also enclosed in a membrane (like the membrane of a biological cell) and selectively admit charged particles (just like the semi-permeable membranes of common biological systems that admit ions i.e. charged particles into the cell). These structures (vortexes, filaments, membranes and the nucleus) have been described in the metaphysical and even religious literature more than 2,000 years old in connection with what is commonly referred to as “subtle bodies”. With a membrane that separates the body from the environment, metabolic and information systems, these subtle bodies are, in fact, plasma life forms.

Dark Matter Life Forms

According to plasma metaphysics (see Jay Alfred, Our Invisible Bodies, 2006), dark matter consists largely of a magnetic plasma of largely non-standard particles or “dark plasma”. Despite the many experiments to concoct life out of chemicals there has yet been no sign of life as complex as the simplest biological cell. One of the main unanswered questions remains as to how DNA, with its double helix structure, was formed. Computer simulations by Tsytovich has confirmed that helical strands are generated in (complex) plasma that look and function like DNA. At a more fundamental level, it is well known that double helical and corkscrew structures are signature features of plasma dynamics. Could the missing ingredients that gave rise to life include certain components which are now included under dark matter? Jay Alfred has proposed the “Dark Panspermia” hypothesis (see Plasma Life Forms – Dark Panspermia, 2007) which proposes that dark matter was carried by comets, meteorites and asteroids as they traversed the dark matter filled space around the solar neighborhood. As they impacted the Earth, dark plasma cells acted as templates for the formation of biochemical cells. Both dark matter and ordinary life forms co-evolved over vast stretches of time.

Perhaps a bacterial cell in solution should be “diluted” (similar to procedures often encountered in homeopathy) – by very slowly and meticulously taking apart each component of the bacteria. A healthy human cell should then be introduced into the solution to see if it would undergo reactions that would be similar to reactions caused by the same type of bacteria composed of visible ordinary matter. If it does (as would be expected and claimed by homeopathic theory) it will betray the presence of the dark matter counterpart of the visible bacteria.

Inter-Substrate (Plasma-Carbon) Symbio-genesis

Biologists are beginning to realize that co-operation was just as important as competition in the evolution of life’s diversity and resilience. Every cell in the human body contains a mitochondrion which is thought to be a bacterial cell which invaded an early eukaryote. Instead of being digested, both cells tolerated each other and began to live with each other – a merger which provided synergies to both. This is a startling example of symbio-genesis. But then every mulit-cellular animal or plant is also an obvious example of co-operation rather than competition. More than a 1,000 trillion cells are living peacefully and co-operating in your body; together with 500 to 100,000 species of bacteria. In fact, there are about ten times as many bacteria as human cells in the human body. Does symbiosis extend further?

There is anecdotal evidence that plasma life forms formed symbiotic relationships with the abundant carbon-based life forms on Earth – particularly with hominids. Unlike other know species of animals, the unique brains of hominids allowed them to activate the higher energy bioplasma bodies that co-evolved with the physical-biochemical body without necessarily having any conscious awareness that they were accessing a different cognitive system. Relationships developed between the lower energy carbon-based bodies and the higher energy bioplasma bodies which were sustained, perhaps, for several millions of years up to the present. This allowed the higher energy bioplasma bodies to evolve in a unique way on Earth.

Conclusion

Do we need to expand the definition of life? When and how does a life form become conscious of itself? Is consciousness a fundamental attribute of physical matter like spin, mass and charge which physicists themselves do not quite understand? Is the cell (as defined in mainstream biology) the smallest unit of life? Are the subtle bodies described in the metaphysical literature plasma life forms?

The new science of astrobiology at NASA appears to be limping along in its understanding of life in the universe probably because it is saddled with the heavy weight of fixations generated from a biology that is largely based on chemistry rather than the whole of physics.

© Copyright Jay Alfred 2008